

Modeling of MOCVD of GaN-based electronic devices

Outline :

- 1. Introduction
- 2. AIGaN buffer: parasitic reactions and uniformity
- 3. Carbon incorporation in GaN and AlGaN
- 4. AlGaN barrier layer: thickness and composition uniformity
- 5. Summary

Scope of modeling:

•Gas flow in the reactors

•Heat transfer and temperature distribution over the wafer

Gas-phase and surface chemical reactions

• Prediction of the growth rate and layer composition, dopant concentration; distribution over the wafers

• Parasitic deposition and particle formation

Modeling Solutions for Crystal Growth and Devices

Typical GaN-on-Si device structure

What is needed:

- Reasonable growth time
- Good uniformity
- Targeted electrical properties
- Strain control and crack suppression

Model of G5+C reactor:

Detailed model of G5+C reactor is used to demonstrated simulation capabilities

Optimization of growth and uniformity of the buffer layers

Gas-phase and surface chemistry

2 - TMAI and TMGa decomposition strongly temperature dependent

3 - Adduct formation and parasitic reactions: ammonia and pressure dependent

- Reactions with radicals

AlGaN buffer layer: growth rate and Al content

Growth rate and AI composition decrease due to parasitic reactions, uniformity gets worse

AlGaN buffer layer: carbon concentration vs P

However carbon concentration uniformity gets better because of the difference in growth and doping mechanism

Modeling Solutions for Crystal Growth and Devices

AlGaN buffer layer: optimized conditions

Optimized conditions allow to improve the uniformity and keep reasonable growth rate

GaN: doping and uniformity

Carbon incorporation to GaN is sensitive to:

- Temperature
- Carrier gas
- Precursor flow rates
- Pressure
- Reactor type

GaN:C layer: carbon incorporation

Desired carbon concentration and uniformity can be reached by using external doping source

Undoped GaN channel: carbon incorporation

Highly pure and uniforms layers can be grown by applying proper growth conditions

AlGaN barrier layer: thickness and composition uniformity

GaN surface chemistry: etching by H₂

GaN(s) + _V + (3/2)H₂ \Leftrightarrow Ga_V + NH₃ – Ga is removed form bulk to surface

Ga_V ⇔ Ga + _V – Ga desorption

E.E. Zavarin et al, ECS Proc, 2005-09 (2005) 299

AIGaN etching by H₂

M. Daulesberg et al, JCG 393 103 (2014)

 Dependence of AlGaN composition and thickness on temperatures is caused by hydrogen etching reaction

• This effect is critical for barrier layer uniformity

SIR

Temperature distribution on the wafer

Strong convex bowing results in non-uniform wafer temperature

Modeling Solutions for Crystal Growth and Devices

Barrier layer uniformity: basic conditions

Temperature non-uniformity in non-uniform thickness and composition distribution of the barrier

Modeling Solutions for Crystal Growth and Devices

Barrier layer uniformity: optimized conditions

Optimized conditions allow improving barrier layer uniformity

Summary:

- MOCVD process model can be used to analyze the productivity and uniformity at all stages of GaN-on-Si epiwafer growth
- AIGaN composition uniformity depends on gas-phase parasitic reactions and temperature distribution over the wafer and can be optimized by proper growth conditions
- Carbon concentration in GaN and AlGaN strongly depends on process parameters
- MOCVD modeling can be effectively used to improve the process characteristics and reduce the cost of production of GaN-based electronic devices