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Modeling of MOCVD
of GaN-based electronic devices
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Outline :

1. Introduction
2. AlGaN buffer: parasitic reactions and uniformity
3. Carbon incorporation in GaN and AlGaN

4. AlGaN barrier layer: thickness and composition
uniformity

5. Summary
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Scope of modeling:
«Gas flow in the reactors
Heat transfer and temperature distribution over the wafer
- Gas-phase and surface chemical reactions

* Prediction of the growth rate and layer composition, dopant
concentration; distribution over the wafers

« Parasitic deposition and particle formation
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SiN passivation Typical GaN-on-Si
AlGaN barrier device structure

u-GaN

What is needed:
C:GaN

AlGaN step graded « Reasonable growth time
buffer layer

« Good uniformity
AlGaN « Targeted electrical properties

AIN e Strain control and crack
suppression

Si (111)
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Model of G5+C reactor:

G5+ reactor

top hydride | = —————
alkyl inlet 1 [

alkyl inlet 2 | 2%
alkyl inlet 3 g _

bottom l =
hydride inlet ®%=

Detailed model of G5+C reactor is used to demonstrated simulation
capabilities
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Optimization of growth and uniformity of the buffer
layers

SiN passivation

AlGaN barrier
u-GaN

C:GaN

AlGaN step graded
buffer layer

AlGaN

AIN

Si(111)
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Gas-phase and surface chemistry

CHy + Hy¢> CH +H
e NH; + H <> NH, + H,

NH; + CH, <> NH, +

[AI(CH;),:NH,],,, n=3 2CH, > C,Hg
Al(CH3),:NH, / Particles
T \ ‘ -CH3 Ga(CH3)3
[AI(CH),:NH, ¢
Al(CHs)4:NH, ¢ Ga(CHj), 9
-CH
! -2CH, w”
€ ~cH,),— aicHy) AN Ga(CHy)

o e - TMAI and TMGa decomposition strongly temperature dependent

e - Adduct formation and parasitic reactions: ammonia and pressure dependent

0 - Reactions with radicals
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AlGaN buffer layer: growth rate and Al content
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Growth rate and Al composition decrease due to parasitic reactions,
uniformity gets worse
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AlGaN buffer layer: carbon concentration vs P
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However carbon concentration uniformity gets better
because of the difference in growth and doping mechanism
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===  AlGaN buffer layer: optimized conditions
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Optimized conditions allow to improve the uniformity and keep
reasonable growth rate
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GaN: doping and uniformity

SiN passivation

AlGaN barrier
u-GaN
‘ C:GaN ’
AlGaN step graded
buffer layer

AlGaN

AIN

Si(111)
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Carbon incorporation to GaN Is sensitive to:

« Temperature

« Carrier gas
 Precursor flow rates
* Pressure

 Reactor type
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GaN:C layer: carbon incorporation
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Desired carbon concentration and uniformity can be reached by
using external doping source
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Undoped GaN channel: carbon incorporation
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- basic conditions

— higher NH; flow rate

— higher N,fH ratio and NH; flow rate
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Highly pure and uniforms layers can be grown by applying proper
growth conditions
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AlGaN barrier layer: thickness and
composition uniformity

SiN passivation

AlGaN barrier
u-GanN

C:GaN

AlGaN step graded
buffer layer

AlGaN

AIN

Si (111)
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GaN surface chemistry: etching by H,
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GaN(s) + _V + (3/2)H, & Ga_V + NH; — Gais removed form bulk to
surface

Ga V& Ga+ V-Gadesorption E.E. Zavarin et al, ECS Proc,
2005-09 (2005) 299
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AlGaN etching by H,

M. Daulesberg et al, JCG 393 103 (2014)

1 — model -Ga dlesorption i(inetics
1/ = = model - transport limited o
351 o experimental data /
f /f * Dependence of AlGaN
_ 7 S composition and
= ] o) ]
3 2 ,/ thickness on
| ol temperatures is caused
20 | ° .
; by hydrogen etching
. reaction

900 950 1000 1050 1100
growth temperature (°C)

* This effect is critical
for barrier layer

AIXTRON (infineon uniformity


http://www.aixtron.com/index.php?id=1&L=1
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- Temperature distribution on the wafer
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Barrier layer uniformity: basic conditions
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Temperature non-uniformity in non-uniform thickness
and composition distribution of the barrier
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e Barrier layer uniformity: optimized conditions
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Optimized conditions allow improving barrier layer
uniformity
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Summary:

« MOCVD process model can be used to analyze the productivity
and uniformity at all stages of GaN-on-Si epiwafer growth

« AlGaN composition uniformity depends on gas-phase parasitic
reactions and temperature distribution over the wafer and can be
optimized by proper growth conditions

« Carbon concentration in GaN and AlGaN strongly depends on
process parameters

«  MOCVD modeling can be effectively used to improve the process
characteristics and reduce the cost of production of GaN-based
electronic devices



